调和 1.(配合适当) be in harmonious proportion 矛盾的调和 the harmony of contradictions; 色彩调和。 colors are in harmony. 这两种颜色配得很调和。 these two colours blend well. 这建筑物和周围环境颜色很调和。 the building tones (in) well with the surroundings.2.(调解) mediate; reconcile 从中调和 act as mediator; 调和不同的社会利益 reconcile various social interests3.(妥协) compromise; make concessions 不调和的斗争 uncompromising struggle; 在这个问题上没有调和的余地。 there is no room for compromise on this matter
映射 shine upon; cast light upon; representation; [数学] mapping; map 阳光映射在江面上。 the sun shines upon the river
The variational calculation of potential p - harmonic maps 调和映射的变分计算
On harmonic maps into a real form of unitary group u 到酉群实形式的调和映射
A note on regularity for very weak nonhomogeneous p - hamonic mappings 调和映射正则性的一点注记
Teichm ller mappings and harmonic maps 映射与调和映射
Stability of x - harmonic ma 调和映射的稳定性
By using darboux transformations , we give the explicit construction for local isometric immer Gk ( q勺是具有有限uniton数的调和映射
In chapter two , we propose a mesh fusion algorithm base on local harmonic mapping . compared with the global harmonic mapping method , this approach has the following advantages 在第二章中,我们提出了基于局部调和映射的网格融合方法。
61 duchamp t , certain a , derose t , stuetzle w . hierarchical computation of pl harmonic embeddings . technical report , university of washington , july 1997 . 62 floater m s . one - to - one piecewise linear mappings over triangulations 本文将对目前的主要曲面参数化方面的工作进行总结,重点介绍调和映射共形映射以及保积映射的基本原理,及其在平面参数化中的应用。
When target manifold is r , . if u is a function of finsler manifold , we can define laplace operator , it is well - defined . if u is called the eigenvalue of the laplacian a and u is called the corresponding eigenfunction 众所周知,对于黎曼几何,调和映射是调和函数的推广,且当目标流形为r时,二(哟二撇el ] .因此对于尸‘ nsler流形m上的函数。可以定义laptace算子为。
The second part consist of chapter four . in chapter one , we study the energy density of harmonic map from finsler manifold and generalize classical result in [ se ] . in chapter two , we obtain lower estimates for the first eigenvalue of the laplace operator on a compact finsler manifold , and it generalize lichnerowicz - obata theorem [ li ] [ ob ] . in chapter three , we derive the first and second variation formula for harmonic maps between finsler manifolds . as an application , some nonexistence theorems of nonconstant stable harmonic maps from a finsler manifold to a riemannian manifold are given 第一章讨论finsler流形到黎曼流形调和映射的能量密度的间隙性,推广了[ se ]中的结果。第二章对紧致finsler流形上laplace算子的第一特征值的下界作了估计,推广了黎曼流形上的lichnerowicz - obata定理[ li ] [ ob ] 。